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ABSTRACT

Much recent discussion in computing journals

has been devoted to arguments about the feasibil­

ity and usefulness of formal verification methods

for increasing confidence in computer programs.

Too little attention has been given to precise

criticism of specific proposed systems for reason­

ing about programs. Whether such systems are to

be used for formal verification, by hand or

automatically, or as a rigorolls foundation for

informal reasoning, it is essential that they be

logically sound. Several popular rules in the

Hoare language are in fact not sound. These rules

have been accepted because they have not been sub­

jected to sufficiently strong standards of

correctness. This paper attempts to clarify the

different technical definitions of correctness of

a logic, to show that only the strongest of these

definitions is acceptable for Hoare logic, and to

April 9, ]980



•
- 2 -

correct some of the unsound rules which have

appeared in the literature. The corrected rules

are given merely to show that it is possible to do

so. Convenient and elegant rules for reasoning

about certain programming constructs will probably.

require a more flexible notation than Hoare's.

Key words and phrases: verification, soundness,

partial correctness, defined functi.ons, Gato,

logic.

CR categories: 5.21, 5.24, 4.29.

1. Introduction

Logic is the study of the relation between a symbolic

language and its meaning, with special emphasis on the legi­

timate ways of reasoning in the language. A primary .accom­

plishment of Mathematical Logic in the earlier part of this

century was the formalization of the First Order Predicate

Calculus, a logical language which is generally regarded as

sufficient in principle for nearly all mathematical

discourse. Formal rules for reasoning in the First order

Predicate Calculus have been shown to be correct and power­

ful enough to derive all true theorems of this language. In

the last decade, new languages and formal rules for reason­

ing about programs have been proposed, and attempts h.ave

been made to justify the correctness of these rules.

A particularly popular language for reasoning about
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programs is the language of Hoare triples (13). The Hoare

language includes the formulae of the First Order Predicate

Calculus, plus triples of the form A{P}B, with A and B

Predicate Calculus formulae and P a program or part of a

program. Such a triple is intended to mean that, if the

initial state of a machine satisfies the assertion A, then

after running the program P, B must be true of the final

state. Unfortunately, several different definitions of the

correctness of a system of reasoning, which are equivalent

for the Predicate Calculus, are not equivalent for the Hoare

language. So we must be very careful when studying rules

for reasoning in the Hoare language to use a criterion for

correctness which corresponds to our intuitive idea of legi­

timate reasoning. Several articles on Hoare logic in the

past few years [6,16,19] have attempted to justify rules of

reasoning by criteria which are insufficient to give intui­

tive confidence in the derivations which are carried out by

such rules.

There are three main reasons for using a formal presen­

tation of logic instead of relying solely on intuition when

reading and writing technical arguments:

[1] A formal presentation provides a uniform standard which

may be used as a final authority in disagreements.

[2) Formal presentation makes a system of reasoning into a

mathematical object which may be studied objectively to

discover its properties.

April 9. 1980
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[3] A formally presented system may be processed automati­

cally by computers.

To be useful for any of these three purposes, a formal sys­

tem must be intuitively correct. A common enterprise in

logic is to formalize the notion of correctness and to prove

that a formal system is correct. Along with such a proof, a

careful intuitive inspection of the formal definition of

correctness is essential, since everything hinges o~ this

definition. Such careful scrutiny has generally been omit­

ted in published work on Hoare logics. The purpose of this

paper is to begin such a scrutiny. I will show that several

proposed .rules for reasoning abo"ut programs have been judged

by faulty standards of correctness, and are in fact

incorrect by the proper standards.

Section 2 describes four different technical defini­

tions of correctness and argues that only the strongest of

these definitions is intuitively sufficient. Section 3

introduces the Hoare language and its meaning. Section 4

shows the well-known correct rules for reasoning about pro­

grams with assignments, conditionals and while loops. Sec­

.tion 4 extends the rules to handle programs wi th function

definitions. The first two published attempts to give rules

for function definitions [6,16,19] were incorrect. Section

5 discusses the problems of reasoning about programs with

Goto commands. The best-known rule for reasoning about

Gotos [6] is also incorrect, although it satisfies a weaker
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condition which is sometimes mistaken for correctness.

2. Criteria for correctness of a logical system

Two primary requirements are known for the correctness

of a system of reasoning, each with several variations in

its technical definitions. Consistency refers to the ina­

bility of a system to derive an explicit contradiction,

while the stronger notion of soundness says that everything

derived in a system is in some sense true. There are two

natural definitions of consistency.

Definitions

Assume that a relation contradic,tory(iP) has been

defined on fini·te se'ts iP of formulae in a language so

that contradictory(iP) captures -the in'tuitive -notion

that the formulae in ifl are ,explicitly contradictory.

A system of reasoning is strongly consistent if it is

not possible to prove all of the formulae in a set ~

such that contradictory{~)•

A system of reasoning is weakly consistent if it is not

possible to prove a single formula F such that

contradictory({F}) .

Strong consistency certainly implies weak consistency.

In the First Order Predicate Calculus, contradictory{~)

holds whenever .p contains t\V'o formulae of the forms F and ....,F

April 9, 1980
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ot" a single formula of the form (F&....,.F), or the formula

False. Other sets of formulae may be taken as contradictory

as long as it is obviously impossible for all formulae in

the set to be true. Since (F&....,.F) (equivalently, False) is

provable if and only if F is provable and ....,.F is provable,

weak and strong consistency are equivalent for the First

Order Predicate Calculus with the definition of

contradictory above, or with any reasonable more liberal

definition. But in Hoare logics, two formulae A{~JB and

C{QJD cannot be combined with a symbol like &. So weak and

strong consistency might not be equivalent for systems of

reasoning in Hoare languages. 1 show in Section 5 that a"

system proposed by Musser [16,19} for reasoning about func­

tion definitions in Euclid is weakly consistent but not

strongly consistent. The proposed system violate~ the prin­

ciple that (F&,F) is provable if and only if F and ,F are

each provable.

Strong consistency, for some reasonable definition of

contradictory, is intuitively a necessary condition for the

correctness of a logical system, but it is not in general a

sufficient condition, since a system might prove a formula

which is false but does not contradict any other provable

formula.

Definitions

A set of formulae ~ implies a formula F if F is true in

every world in which all the formulae in ~ are true.
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A logical system is theorem sound if every provable

formula is true.

A logical system is inferentially sound if, for every

set of formulae ip and every formula F, if F can be

proved from assumptions in ip, then ip implies F.

In any system where contradictory formulae cannot all be

true I theorem soundness impl ies strong consistency. If, in

addition, there exists a trivially true formula F which can­

not possibly be useful as an assumption (for example, F

might already be an axiom) then inferential soundness

implies theorem soundness.

In the First Order Predicate calculus, F is provable

from assumptions in ip if and only if there is some finite

subset {F
I

, ,F
o

} of ip such that ((FI & ••• & Po) => F}

is provable with no assumptions. Since the meaning of the

implication symbol is just that the left side implies the

right side, theorem and inferential soundness are equivalent

for the First Order Predicate Calculus. In Hoare logics, it

is not always possible to join two formulae with an implica­

tion sign, so theorem soundness may be weaker than inferen­

tial soundness.

Al though theorem soundness seems at first glance to be

enough for an intuitive claim of correctness, this weaker

form of soundness only justifies the theorems of a system,

not the methods of reasoning. If a formal system is to pro-
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vide a satisfactory foundation for actual reasoning, the

methods of proof should be intuitively correct, not just

symbol manipulation tricks which fortuitously produce true

theor~ms at the end. One might argue that certain rules for

program verification are intended only for automatic theorem

proving, not for human consumption, so that the steps of

reasoning are not important as long as the answer is right.

Even from such a restricted point of view, theorem soundness

is at best not a very robust notion.

Suppose that a certain logical system is incomplete, so

that some particular true formula F cannot be proved. Such

a system might be theorem sound, even though assuming F

would lead to a proof of some false or even contradictory

formula G. Any attempt to extend this system by adding true

formulae as axioms or by providing additional correct rules

of inference would be very dangerous, since once the true

formula F became provable, so would the false formula G. In

Section 6 I show that the rules for reasoning about Goto

commands proposed by Clint and Hoare [6] create a system of

reasoning with this dangerous property: because of the lack

of inferential soundness, addition of true axioms yields an

inconsistency. Arbib and Alagi~ [1,3] also noticed a prob­

lem with the Clint and Hoare Goto rule. In inferentially

sound systems every step of reasoning is correct, so sound­

ness is preserved when additional true axioms or additional

sound rules are added.

ll.nr; 1 Q lql=!.n
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3. Meanings of formulae in Hoare logics

Recall that a Hoare formula is either a formula of the

First Order Predicate Calculus or a triple A{P}B with A and

B formulae of the Predicate Calculus and P a program or pro­

gram segment (some people prefer to write (AlpIB}). Predi­

cate Calculus formulae are built from function, constant and

variable symbols, relational symbols, the equality sign, and

the usual logical symbols & (and), V (or), """1 (not), =>

(implies), V x (for all x) and:>Ix (there exists x). For

example,

\lx:;Yy (y>x & primeCY»

is a Predicate Calculus formula expressing the fact that

there exist arbitrarily large primes. Such formulae have

the standard meanings, which correspond exactly to the

intuition; see [18] for a formal treatment.

Great effort has gone into formalizing the meanings of

programs [22,11], but for this discussion I will use only

programs whose meanings are intuitively obvious. There are

two popular ways to define the meaning of a Hoare triple

A{P}B, which differ in their treatments of cases where P

fails to halt.

Definitions

A Hoare triple A{P}B is a true partial correctness for­

mula if, whenever the program segment P begins execu-

April 9, 1980
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tion wi th its fi.cst command, in a state for which A is

true, and p terminates normally by executing its last

command, then B is true of the resulting final state.

A{P}B is a true total correctness formula if, whenever

P begins execution with its first command, in a state

for which A is true, then p terminates normally QY exe­

cuting its last command, and B is true of the resulting

final state.

For example,

A{While True do x:=x end}B

is always a true partial correctness formula, independently

of A and B. Partial correctness formulae make no distinc­

tion between failure to terminate and abnormal or unsuccess­

ful termination due to an error such as division by zero.

The formula above is a false total correctness formula as

long as there exists a state for which A is true. False{P}B

is a true formula for both partial and total correctness.

If P always halts when started in a state for which A is

true, then the partial and total correctness meanings for

A{P} B are the same. For example,

x>O&y>O{z:=l; i:=O; While i<y do z:=z*x: i:=i+l end}z=x Y

correctness,total

the program inside the

To achieve machine

is a true formula for both partial and

roughly expressing the fact that

braces computes x to the y power.
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independence, programs in Hoare formulae are assumed to be

executed on an ideal machine with an arbitrarily large

memory capacity, so that there are no overflows.

The partial correctness meaning for Hoare triples is

more popular than the total correctness meaning because it

is thought to be easier to deal with in formal proofs. Of

course a partial correctness proof for a program is only

valuable if we convince ourselves by some other means that

the program halts. In the rest of this discussion, Hoare

triples will always be interpreted as partial correctness

formulae unless otherwise stated.

For the Hoare

whenever some

language

Predicate

contradictory(~)

Calculus subset

should

of

hold

is

contradictory. Also, if Y is a contradictory set of Predi­

cate Calculus formulae, and P is a well-formed program

which obviously halts (e.g., a program with no loops), and

if ~ contains all the formulae True{p)A for A in Y, then ~

is contradictory. Any additional intuitively contradictory

sets of formulae may be added to the definition of

contradictory(~) without affecting the following discussion.

4. Proof rules for programs with conditional and while

Consider a programming language with simple assignments

x := E

for expressions E, a command

April 9, 1980
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Null

which does nothing, a command

Fail

which never terminates normally,

of the form

If A then P else Q end,

and loops of the form

While A do Pend.

two-branched conditionals

where Fl'

lae. The

hypotheses

Commands may be sequenced in the Pascal style with semicolon

separators. Of course, Null and Fail are not needed, but

they are convenient for discussion.

Assume that we have taken some sufficiently powerful

proof rules from Mathematical Logic for all of our predicate

Calculus reasoning. In order to prove theorems i,n the form

A{p}B we need additional rules for reasoning about p'rograms.

Such rules are commonly written in the form

------------
G

••• , F
o

and G are schematic descriptions of formu­

meaning of such a rule is that, whenever the

F
l

, ••. , F
n

have already been proved, we may



- 13 -

prove the conclusion G in one more step. Sometimes restric-

tions are also given which limit the allowed applications of

the rule. A rule with no hypotheses is often called an

axiom or postulate.

The following well-known set of proof rules [13} is

inferentially sound [B} for partial correctness Hoare logic

with the conditional-while programming language described

above:

Null:
A{~)A

Fail :
A(Fai1}B

In the next rule note that A(E/x) means A with the expres-

sion E replacing all free occurrences of x. A variable

occurrence x is free as long as it is not in a subformula

beginning with Vx or :'Ix. In the process of replacing x by

E, quantified variables in Vy and 3Y within A must be

renamed so that all variables in E remain free after substi-

tution.

Ass ig nment: ------------­
A( E!X) (xo=E) A

April 9, 1980
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A{P}B, B{Q)C

A{P;Q)C
Composition-I: ------------

A&B{P}C, AhB{Q}C

A{l! B then P else Q ~}C
Conditional: --------------------------

A&B{P} A

While: -----------------------
A{While B do P end}A&,B

A=>B, s{ple, C=>D

A{P}D
Consequence: -----------------

To see that these rules are inferentially sound, we merely

check each rule individually to see that whenever the

hypotheses are true, the conclusion must also be true.

Since combinations of inferentially sound systems are

inferentially sound, we need not consider the possible

interactions between rules. Cook fa] has shown that these

rules are sufficiently powerful to prove all true statements

in the Hoare language of conditionaf-while programs.

5. Defined functions

Let us add to the conditional-while programming

language the ability to define functions by means of subpro-

grams. For simplicity, consider only recursion-free (i.e.,
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noncircular) definitions of unary functions, with no nesting

of definitions, no side-effects and no global variables.

Such a simple version of function definitions already pro~

vides interesting pitfalls for Hoare logic.

itions will be written in the form

Function defin,.,..

E: Function(x)i local zl, .•• ,zn; Pi return(y) ~

n may be 0, in which case there are no localabIes in P.

must be distinct and must contain all vari-

variables, and the phrase local zl"'.'zo; is omitted. The

form return(y) must occur exactly once, at the end, and

should be thought of as a punctuation like Function(x)

rather than a command. The value of x must not be changed

in P. Any changes to the val ues of y,Zl,·",zn wi thin p

have no effect on the values of these variables o~tside of

the function definition.

Clint and Hoare (6,141 proposed the following rule:

A{pJB
Function-I: ----------------

YX(A=>B(E(x)/y»

where f has been defined as

f:Function(x); local 21 ,···,2n ;
Pi return(y) ~

and A and
zl,···,2n

B do not contain
free.

Ashcroft [4] noticed that adding the rule Function-l to

those of section 4 yields an inconsistency.

defined as

l\pril 9, 1980
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(*) f: Function(x); Fail; return(y) end.

Consider the following derivation:

1) True{Fail}False

2) Vx True=>False

3) False

Fail

Function-I, 1)

Predicate Calculus

So, the system containing Function-l is not even weakly con­

sistent.

It may appear that Function-l only derives contradic­

tions from pathological function definitions which never

halt. A similar contradiction arises whenever a defined

function fails to halt for some possible argument, even if

the value of the function is never computed for that .argu­

ment. For example, it is very natural to define the fac­

torial function by a program which works correctly for posi­

tive arguments, but computes forever on negative arguments.

The presence of such a definition leads to a contradiction

even if factorial is only computed for positive arguments.

Alagit and Arbib [11 present the rule Function-l with

an informal warning that the function body must halt when A

is true initially. For a logical rule to be useful, we must

be able to decide when the rule has been applied correctly.

AlagiG and Arbib's restriction, taken literally, cannot be

formalized in an acceptable fashion, since the halting of P

is undecidable. One reasonable way to fix the rule

,...·,_.1 a 10Rn
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Function-l with such a restriction is to provide means for

proving termination, that is, to use a total correctness

logic instead of partial correctness. Alternatively, the

rule could be restricted to some decidable proper subset of

the set of all function bodies which halt.

in disguise. Russell's paradox

The inconsistency

Russell's paradox (21]

in Function-l is essentially

arises from the definition of a set R as the set of all sets

which do not contain themselves. Does R contain itself? A

set may be represented by a function, called the charac­

teristic function, which returns 1 for inputs in the set and

o for inputs not in the set. Russell's set R is represented

-by the defined function

r: Function(g) ~ y:=l-g(g); return(y)~ end

Now, the following derivation mimics Russell's paradox:

1) 1-9(g)=1-g(g){y,=1-g(g)}y=1-9(9) Assignment

2) True =) 1-g(g)=I-g(g) Predicate Calc u1 us

3) y=l-g(g) => y;'g(g) Ad thmetic

4) T<ue{y,=1-g(g»y;'g(g) Consequence, 1),2),3)

5) Vg (True => «g);'g(g) ) Function-I, 4)

6) «r);'«r) Predicate Calculus, 5)

Musser (16,19] proposed a modified function rule in

Euclid notation. Musser's basic idea is that the paradox of

Function-l arises when formulae A and 8 are chosen in such a

April 9, 1980
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way that there does not exist a function f satisfying

Vx(A=>B(f(x)/y)). The existence of such a function may

easily be expressed in the First Order Predicate Calculus as

Vx(A=):[yB). To avoid the extra step of substituting various

values for x, Musser includes the substitution in his rule.

Musser's rule covers recursion, a form of data abstraction,

and more complicated uses of parameters, but, for my res-

tricted function definitions, the rule is essentially

Function-2:

3y{A{E/x) => B{E/x», A{P}B

---------------------------
(A(E/x) => B(E/x,f{E)/y))

where f has been defined as

f:Function(x) ~ local zl'···'z ;
P; return(y) end n

and A and
Zl,···,zn

B do not contain
free.

This rule may be applied
with only one choice
of A and B for each
function definition.

The additional hypothesis 3y(A(E/X)=>B(E/X,f(E)/Y)) prevents

the simple contradiction which arose from Function-I. Now

we need two proofs to derive a contradiction. Let f again

be defined by a body which never halts (*).
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1) True{Fail} False

2) False =) y=O

3) True =) True

4) True{Fail}y=O

5) 3y(True =) y=Ol

6) True =) f(O)=O

7) f (0) =0

Fail

Predicate Calculus

Predicate Calculus

Consequence, 1) ,2) ,3)

Predicate Calculus

Function-2, 4) ,5)

Predicate Calculus, 6)

Similarly,

1) True{Fail}False Fail

2) False =) y"O Predicate Calculus

3) True =) True Predicate calculus

4) True{~}y~O Consequence, 1),2),3)

5) 3"y(True =) y"O) Arithmetic

6 ) True =) f(O)"O Function-2, 4) ,5)

7) f(O)"O Predicate Calculus, 6)

So, the system containing the rules of Section 4 as well as

Function-2 is not strongly consistent. It is weakly con­

sistent only because of the peculiar restriction that

Function-2 may be applied to each function for only one

choice of A and B. (Musserls rule does not express the res­

triction so explicitly. In Euclid, the Predicate Calculus

formulae A and B in A(E/x) =) B(E/x,F(E)/y) must be included

in the function definition, so the single allowed applica­

tion of Function-2 to f is determined by the definition of

L)

.b.pril 9, 1980
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A strongly consistent system may be achieved through

the following rule. The trick is to allow assertions about

expressions feE) only after feE) has been computed within an

expression G[f(E)}. So, if f (El is undefined, any attempt

to compute G[f(E)] fails, and all partial correctness formu-

lae about z:=G[f(E)] are true. If the expression E does not

contain the variable z, the following rule may be used for

reasoning about defined functions:

Alpla

A (E/ x) [z: =G [ f (E) J }a (E/x ,f ( E) /y)

where f has been defined as

f:Function(x); local zl'
Pi return(y) end

..., z •
n'

and A and 8 do not contain
z1""'zo free,

and z does not occur .in E.

If the variable z appears in the expression E in z:=G[f(E)],

then the rule above does not work, because the assertion

B(E/x,f(E)/y) has a different meaning after the assignment

than before the assignment. The following more complicated

rule uses the substitution technique from the Assignment

rule to keep the assertion B(E/x,f(E)/y) before the assign-

ment:

April 9, 1980
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Function-assignment:

A{P)B
------------------------------~------------------

A(E/x)&(B(E/X,f(El/y)=>C(G[f(E)]/Z»{z:=G[f(El]}C

where f has been defined as

f:Function(x)i ~ocal zl, ••• ,zn;
P; return(y) end

and A and
zl,···,zn

B do not contain
free.

If defined functions are used in the conditions of condi-

tionals and loops, two more rules are required:

Function-conditional:

A(P)B, C&G[f(E)}&B(f(E)/Yl(Q)D, C&-,G[f(E)]&B(f(E)/y){R)D

--------------------------------------------------------
A(E/X)&C(.!.i G[f(E)} then Q else R)D

where f has been defined as

f:Function(x); local zl, ••• ,zn;
P; return(y) end

and A and B do not contain
zl, ... ,zn free.

Function-while:

A(P)B, C&G[f(E)} (Q}C

A(E/x)&C(While G[f(El] do Q end}C&-,G[f(E)]

where f has been defined as

f:Function(x); local zl, ••• ,zn;
Pi return(y) end

and A and
zl,···,zn

B do not
free.

contain

'I'hese three rules may be extended in a natural way to handle

April 9, 1980
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more than one defined function.

The soundness of rules for function definitions is a

slippery issue when function bodies fail, since the normal

interpretation of the Predicate Calculus does not allow for

partial functions. So, we consider a Predicate Calculus

formula containing a program-defined function f to be true

when it is true for all total functions f consistent with

the values computed by the definition of f [7]. If the

definition fails to halt, then every total function is con­

sistent with all the computed values (there are none), so

only assertions which hold for all functions, such as

Vx f{x)=f(x), are true for f. The assertion f{O)=O is only

true when the definition of f actually computes the output

value 0 on input o. Under such an interpretation,

Function-assignment, Function-conditional and Function-while

are inferentially sound.

Since the systems containing Function-lor Function-2

are not even strongly consistent, they cannot be sound.

Notice that Function-l is an inferentially sound rule under

the total correctness interpretation. For total correctness

the rules Fail and ~fuile are not sound, so alternate rules

must be used for reasoning about these constructs in a total

correctness logic [7,10).

The logical system containing the rules of Section 4

plus Function-assignment, Function-conditional and

Function-while cannot be relatively complete according to
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Cookls [BJ definition, because there is no way to prove pro­

perties of f(x) unless f(x) is actually computed in the pro­

gram. This system is sufficient to prove all partial

correctness properties of programs which only mention values

of defined functions when those values have actually been

computed.

6. The Gato problem

Since the Hoare language is tailored to the description

of exactly two states associated with a program execution -­

the normal entry and exit states it is not surprising

that trouble arises in considering program segments with

more than one mode of entry and/or exit. Such multiple

entry and exit segments occur when the Gato command is used.

It is not obvious how to interpret A{P}B when P may ter­

minate by executing ~ 1, with the label 1 occurring out­

side of P. The usual solution, proposed by Donahue [11], is

to regard such termination as abnormal. So

True{Goto l}False is a true partial correctness formula,

and, by itself, Goto 1 is indistinguishable from Fail.

Under this interpretation, the Composition-l rule is

unsound. For example, True{Goto l}False and

False{l: Null}False are true hypotheses for Composition-I,

but the associated conclusion True{Goto 1; 1: Null}False is

false, since Goto 1; 1: Null is equivalent to Null. No

system containing Composition-l may be inferentially sound

for reasoning about programs with Gotos. In [II] Donahue
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places such strong restrictions on the use of Gotos that it

is syntactically impossible to have a program segment PiQ

with a jump between P and Q. Composition-l is sound for

Donahue' 5 restricted language.

Cl int and Hoare [6] proposed a rule for reasoning about

Gotos which may be combined with Composition-l in a theorem

sound system. To understand this rule, consider a program-

ming language with assignment, conditional, while loops,

sequencing and Gotos which may branch out of but not into

the scopes of conditionals and loops. without loss of gen-

erality, let all labels be attached to Null commands. The

Null rule must be expanded to allow labelled Null commands:

Null-label:
A{l: Null}A

The Clint-Hoare Gota rule is:

Goto-l:
B{Goto l)False f-A{P}B, B{Goto l)False f-B{Q}C

--------------------------------------------
AlP; 1: Null; Q}C

The following critique also applies to Kowaltowski's varia-

tion on the Cl int-Hoare Goto rule (15]. The hypothesis

B{~ l)False I-A{P}B

is intended to mean that A{P}B has been proved using

B{~ I} False as an assumption (similarly for

B(~ l)False I- B(Q}C)
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The system of reasoning using the rules of Section 4

plus Goto-l is theorem sound. Notice that

'rruP.{~?to lJFulsc, although true, cannot be proved with

these rules, 50 Composition-l cannot be used to produce

True(Goto 1; 1: ~}False. Any extension of this system in

which True{Goto l}Palse is provable is theorem unsound, and

even inconsistent.

What about the inferential soundness of the Goto-l rule

itself? That depends on how we interpret the truth or

falsehood of

B{~ l)False r A{P}B.

If we interpret this hypothesis as true only when there is a

proof of A{P}B from B[~ I} False in the particular system

we are using, then the meaning of this rule depends on the

whole system. For example, the rule would be sound within

the clint-Hoare system, but not in a system which proves

True{~ I} PaIse. Clarke [5] uses this weak interpretation

of J- in .expressing the soundness of a rule for recursive

procedures. A more robust interpretation is that

B(~ l)False r A(P)B

is true whenever there exists an inferentially sound system

in which A{P}B may be proved assuming B{Goto l}False -­

equivalently, whenever B{~ I} False implies A{P}B.

Donahue (11] uses this stronger interpretation of in his

treatment of recursive procedures. Since B{Goto l}False is

April 9, 1980
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true, the implication reduces to simply A{P}B [3]. Contrary

to Donahue's Theorem 5.15 {Ill, the Goto-l rule is certainly

not sound in the stronger interpretation, since

False[Goto l}Falsel- True{Goto l}False,

False [Go to I} False r False {Null} Fal se

are true hypotheses, yet the associated conclusion

True[Goto 1; 1: Null}False

is false. Arbib and Alagit noticed this difficulty indepen-

dently [31.

perhaps the insistence on inferential soundness and the

most liberal possible interpretation of I- seems too picky.

After all, it seems that we only need to be careful about

Gatos, which are well-known to be dangerous beasts, and

avoid introducing axioms like True{Goto l}False. Unfo r-

tunately, the rule Goto-l may yield false conclusions in the

presence of added rules or axioms which do not appear to

have anything to do with Gotos. For example, consider the

sound and intuitively attractive rule:

Zero:
True{P; x:=O}x=O

In the presence of the rule Zero, Goto-l derives incorrect

formulae. For example:



1 )
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1) x:.::O{~ l}False

2) True{x:=li Gato 1; x:=O}x=O

1) x=O{~ l}False

Assumption

Zero

Assumption

2) x=O (1: Null) x=O Null-label

3) True{x:=l; Gato 1; x:=O; 1: ~}x=O Gato-l, 1) ,2)

The correct theorem True{x:=li Gato 1; x:=Q; 1: ~}xiO is

also provable, so the system containing Goto-l and Zero is

not strongly consistent.

How may we reason correctly about Gotos? One way is to

return to the Floyd [12] style of proof, in which a proof

follows the control flow of a program. Constable and

O'Donnell [7 J have explored this idea. Manna and

Waldinger's intermittent assertions [17] also handle Gatos

easily. Even if we insist on using the Hoare language", we

may still have a sound system for reasoning about Gatos.

First, Composition-l must be replaced by:

A{P}B, B{Q}C
Compo si t ion-2: ------------

A{p;QlC

where there are no
Goto branches from
p to Q or Q to P.

To understand the rest of the rules, notice that

A(P; Fail; 1 : Nu 11 JB says that if " is true initially, and P

terminates by executing Goto 1 , then B is true of the final

sta te. Alagi6 and Arbib [ 1 , 3] express the same idea in the

more convenient special notation {A}P{l: B}.

April 9, 1980
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Goto-2:
A{Gete lIB

Gato-label-same: ----------------------
A{Goto 1: Pi 1: Null}A

Gato-label-other:

A{P; Fail; 1: NulllB
-----------------------------
A{P; m: NUll; Fail; 1: Null}B

where 1 and m are different labels.

Goto-composition:

A{P; Fail; 1, Null)C, A{pIB, B{Q; Fail; 1, Null)C
-------------------------------------------------

A{P; Qj Fail; 1: Null}e

where there are no
Gato branches from
p to Q or Q to P.

Gato-conditional:

A&B{P; Fail; 1: Null}e, A&~B{Q; Fail; 1: Nuille
-----------------------------------------------
A{i! B then P else Q end; Fail; 1: ~}C

Gato-while:

Combination:

A&B{P}A, A&B{p;Fail; 1: Null}e
-----------------------------------
A{While B Do P end; Fail; 1: Null}e

A{P}B, A{P; Fail; 1: Null}e
---------------------------

A{P; 1, Null)B

. ,

I
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Alagic' and Arbib [11 present the Goto-2, Gato-label and

Gato-while rules in a somewhat more powerful notation. They

also give the Gato-composition and Composition-l rules com­

bined into one rule, neglecting to state the restriction

that there are no jumps between P and Q. wi thout such a

restriction, the rule becomes unsound. (In private

correspondence, Arbib indicates that the rule was only

intended to apply to a restricted form of statement, called

an L_statement. Arbib and Alagic' 5 rule is sound for L­

statements. The restriction is not given explicitly in the

statement of the rule.) Combination is strengthened to

include one application of Composition-I. Gato-conditional

is omitted in [1].

The system consisting of the rules Null, Fail, Assign­

ment, Conditional and While from Section 4, along with

Null-label Composi tion-2, Goto-2, Goto-label, Goto­

composition, Goto-conditional, Goto-while and Combination

above, is inferentially sound. Cook'S techniques for prov­

ing relative completeness [8] may be used to show that this

system is sufficiently powerful to derive all true partial

correctness formulae for our simple programming language

with Gotos.

7. Summary and Conclusions

I have argued that a logical system is only correct

when it is inferentially sound, so that every intermediate

step in a proof, as well as the final result, is true
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according to some intuitively meaningful notion of truth.

Weaker correctness criteria, such as theorem soundness,

which guarantees the truth of final results, but not inter­

mediate steps, are unacceptable because they allow intui­

tively false reasoning which leads by formal tricks to true

results. A logical system which is theorem sound but not

inferentially sound is very dangerous because the addition

of true axioms may introduce an inconsistency.

Rules proposed for reasoning about defined functions

and Gotos in the Hoare style have not always met the stan­

dard of inferential soundness. Inferentially sound rules

are not hard to find, but they are unsatisfyingly inelegant.

The problem seems to be that partial correctness reasoning

in the Hoare language is very natural for programs with only

conditionals and loops for control structures, but not for

programs with defined functions and/or Gotos. Defined func­

tions tangle partial correctness and termination together to

such an extent that it is no longer convenient to separate

them. Since it is essential to prove termination anyway, we

should use total correctness logics for reasoning about

function definitions. Goto commands destroy the Hoare-style

analysis of programs by structural induction, since the

semicolon does not really indicate composition in the pres­

ence of ~s, as it does in their absence. Goto commands

are handled very naturally in the Floyd style of reasoning.
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